eftec Economics for the Environment

Consultancy

Applying economic tools in marine decisions: natural capital valuation and accounting

Ian Dickie

Coastal Futures 2016
Review and Future Trends

20th January 2016

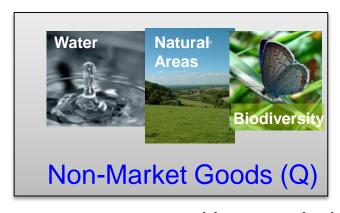
Outline

- About eftec
- 2. Economic valuation
- 3. Value transfer: principles and practice
- 4. Accounting approaches
- 5. Natural capital investments
- 6. Conclusion

1. About eftec

- Leading consultancy specialising in environmental economics in the UK providing economic analysis for effective and sustainable environmental policy and management
- Our work regarding the marine environment includes:
 - Impact assessments for designating MPAs
 - Implementation of MSFD in UK and OSPAR region
 - Modelling fisheries policies and estimating the economic value of illegal fishing
 - Valuation of marine ecosystem services

2. Economic valuation


Why use environmental economics?

- To understand the value
 - Ultimately estimate 'the demand for the environment'
 - Environment is something people have preferences for, and there are trade-offs to assess
- To demonstrate value
 - Economic appraisal (CBA, IA, etc.)
 - Environmental accounting
- To capture value
 - Economic instruments (e.g. subsidies, compensation)

2. Economic valuation of environment

- Economic valuations reflect the relative importance or worth of natural capital to people in a particular context
- Not 'putting a price on nature', not a moral judgement
- Values of change
 - Needs a baseline and a measure of change
 - Values are context (e.g. location, time) specific
- Only as accurate as underlying science

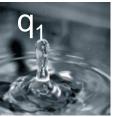
How much does individual's wellbeing change?

2. Economic valuation of environment

Primary methods:

- Market prices
- Proxies through observed behaviour in markets
- Surveys of individual's preferences

Value transfer:


- Adjustment of existing evidence to a new context
- More cost-effective and quicker

from this...

to this...

How much does individual's wellbeing change?

3. Value transfer: principles

- Use of readily available economic valuation evidence to estimate the monetary value of environmental benefits or costs associated with a proposed policy or project
- A practical tool for appraisal (CBA) quicker and lower cost than primary studies
- Varying levels of sophistication
 - Adjusted unit value, and value function transfer
 - Ways of adjusting secondary valuation evidence to the change and <u>context</u> where decision is being made

3. Value transfer: practice

Developing the evidence base for impact assessments for 18 recommended MPAs and dSPAs in Scotland (2015)

- Potential economic and social impacts of designation
- Used value transfer to determine the use and non-use values to anglers and divers based Kenter et al. (2013) - part of UK NEA, which looked at over 100 potential sites including 25 MPAs in Scotland
- 18 sites valued (20 yrs) at:
- Existing recreational value of £270 m (PV; 20 yrs)
- Additional protections have £0.7 £1.8 bn recreational value, and estimated non-use values of £2.1 £6.2 m per site

4. Organising values: accounting

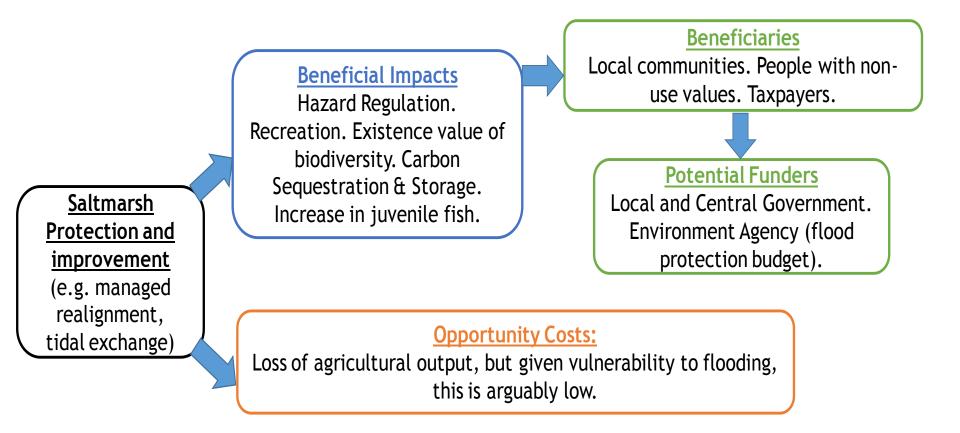
Values need to be incorporated into decision-making processes - use accounting approaches

- National Accounts approach used follows the UN framework for experimental ecosystem accounts
- Corporate Natural Capital Accounting (CNCA), methodology developed by eftec for Natural Capital Committee
- Both involve:
 - Physical asset account
 - Physical flow account
 - Monetary flow account

		Year 2013			
		Renewables		Total	
	CNCA)	Private	External	Value	
sets		£'m	£'m	£'m	
1	Baseline value (2008)	14.1	12.3	26.4	
2	Cumulative gains/(losses)	1.7	4.4	6.1	
3	Additions/(disposals)	1.7	1.6	3.4	
4	Revaluations and adjust.				
	Gross asset value	17.5	18.4	35.8	
abilities		Private	E×ternal		
5	Legal provisions				
6	Other maintenance provisions	(3.6)	(1.5)	(5.1)	
	Total maintenance provisions	(3.6)	(1.5)	(5.1)	
otal Net Natural Capital				30.7	

4. UK marine ecosystem accounts

- eftec scoping study of a UK marine environmental account
- Ecosystem services flows determined using scientific modelling based on existing data in UK
- Physical flows that could be given monetary values using value transfer:
 - Fisheries: market price of fisheries applied to volume of fisheries
 - Climate regulation: price of CO₂ applied to volume of carbon sequestered by marine environment
 - Recreation: welfare value (£/visit based on meta-analysis study from UK NEA) applied to number of visits to marine and coastal environment
- No marine CNCA study yet exists
- Natural Capital Protocol (forthcoming) guiding business' use of economic valuation of the environment


5. Natural capital investment cases

- Economic evidence on the costs and benefits of investing in natural capital for the Natural Capital Committee's 3rd State of Natural Capital Report
- eftec-led study described 10 investment 'cases' to protect and improve natural capital
- Investments summarised using 'value chains' including:
 - Saltmarsh
 - Demersal fisheries
 - Shellfish

5. Natural capital investment cases

Saltmarsh - value chain

<u>Technical underpinning of the case:</u> Coastal land that is uneconomic to defend. Realignment techniques.

5. Natural capital investment cases

Shellfish - value chain

Reduction in
Short-term Stock
Mortality to
Fishing
Recovery of
spawning stock

Beneficial Impacts

Reduced risk of shellfish stock collapse (potential PV costs of £500m over 50yrs). Increased resilience to climate change.
Reduced costs of fishing.
Recovery of shellfish stocks leading to increased landings with PV of £120m+ over 50yrs.

Beneficiaries

Fishermen. UK consumers and taxpayers. Coastal fishing communities.

Potential Funders

EMFF (redirection of Common Fisheries Policy funds). Fishermen. Private investors.

Opportunity Costs:

Short term loss of turnover to fishing fleet, and up- and downstream turnover and employment in coastal communities.

Technical underpinning of the case: Science on current stock status and levels of MSY.

6. Conclusion

- Economic valuations reflect the relative importance or worth of natural capital to people in a particular context
- Need more marine evidence, but what we have can be adjusted to different contexts to inform different decisions using value transfer
- Identifying the value of ecosystem services leads us to:
 - Organise valuation evidence using accounting approaches
 - Consider the capacity to sustain services = natural capital
 - Invest in natural capital to protect and improve benefits to people over time

Thank you!

Ian Dickie

ian@eftec.co.uk

02075805383

www.eftec.co.uk

www.uknee.org.uk