

Listen to the ocean

Ecosystems Services in the Marine Environment: Indicators and Monitoring Mel Austen

Coastal Futures 2015

What I aim to cover today....

- Context of the research VECTORS
- Ecosystem services and ecosystem benefits
 - New marine typology

PML Plymouth Marine

- Indicators we now have some!
- But there are difficulties applying them
 - Application of indicators to ecosystem services in the Dogger Bank, North Sea
- Mi8salignm3nt with MSFD indicators and monitoring?
- Where to find out more...

Acknowledgements

Plymouth Marine Laboratory

PML

- Caroline Hattam, Jonathan P. Atkins, Nicky Beaumont, Tobias Börger, Anne Böhnke-Henrichs, Daryl Burdon, Dolf de Groot, Ellen Hoefnagel, Paulo Nunes, Joanna Piwowarczyk, Sergio Sastre
- Tiziana Luisetti, Sue Boyes, Daryl Burdon, Jonathan P. Atkins, Tobias Börger, Michael Elliott, Arantza Murillas, Soile Oinonen, Lucille Paltriguera, Nadia Papadopoulou, Joona Salojärvi, María C. Uyarra

Stefanie Broszeit, Nicky Beaumont

VECTORS of Change in European Marine Ecosystems and their Socio-Economic Impacts

Mel Austen (Project Coordinator) Plymouth Marine Laboratory

- Feb 1 2011 Jan 31 2015
 Total cost €16.6 million
- •€12.5 million funding from EC

EU OCEANS OF TOMORROW

Changes in marine life:

- Invasive alien species
- Outbreak forming species
- Changes in fish distribution and productivity

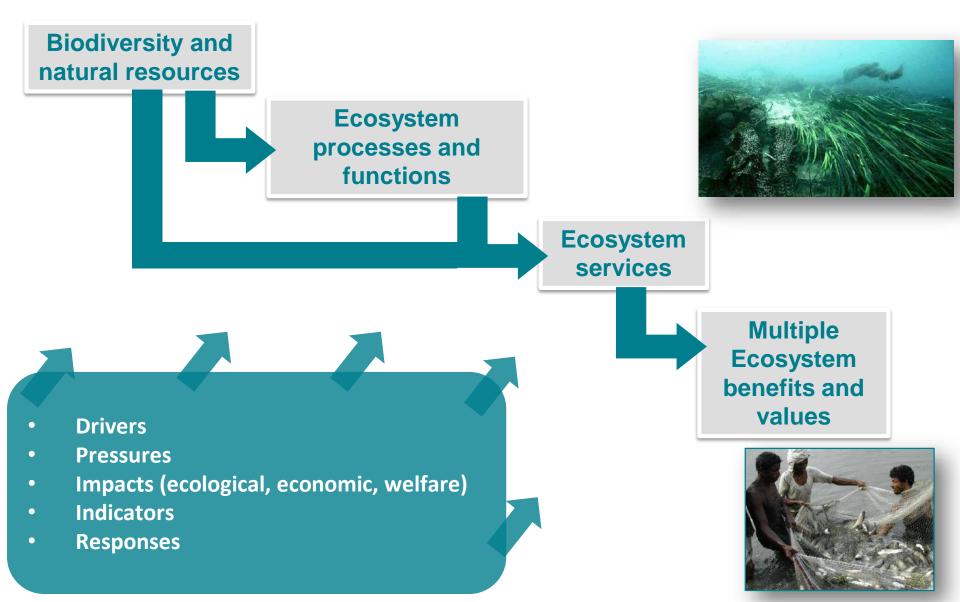
Ecosystem Approach:

Environmental, Economic and Social perspectives

Drivers and pressures Mechanisms Impacts Future projections Risk assessments Policy and management implications

Baltic Sea

North Sea


West <u>Mediter</u>ranean

PML | Plymouth Marine Laboratory

Ecosystem services in practice: Development of indicators for application in management/policy/regulation

- 1. Define the services new marine typology \square
- 2. Define indicators of services, functions, benefits
 - Measurable, sensitive, specific

3. Apply and test

Hattam C, Atkins JP, Beaumont N, Börger T, Böhnke-Henrichs A, Burdon D, de Groot R, Hoefnagel E, Nunes PA, Piwowarczyk J, Sastre S, Austen MC (2014). Marine Ecosystem Services: linking indicators to their classification. Ecological Indicators, 49, 61-75. http://dx.doi.org/10.1016/j.ecolind.2014.09.026 [open access]

	Generic marine ecosystem	
Ecosystem services	service indicators	Measurement (Units)
1a: Food provision -	Fish and shellfish	Biomass (tonnes km ⁻²) or abundance (nos km ⁻¹
Wild capture sea	populations, seaweed stock	²) of fish and shellfish; area (m ²) or biomass
food		(tonnes km ⁻²) of seaweed
	Quality of the fish,	Species composition, Age profile; length
	shellfish, seaweed stock	profile; % affected by disease; mortality rates
sea food	stock	area (km ²) or biomass (tonnes km ⁻²) of seaweed;
	Quality of the fish, shellfish, seaweed stock	% affected by disease; mortality rates
2a: Biotic raw	Presence and diversity of	Presence/absence of desirable species;
material - Genetic	species with	diversity of desirable species
resources	potential/actual useful genetic material	
	Quality of species with	Endemism and uniqueness of species
	potential/actual useful	
	genetic material	
2b: Biotic raw material -	Quantity of available raw material	lotal quantity available in a fixed area (g raw material)
Medicinal resources	Quality of raw materials	Concentration of raw material (g l ⁻¹ seawater, g m ⁻³ sediment)
2c: Biotic raw material -	Quantity of raw material	Mass available in a fixed area (tonnes)
Ornamental resources	Quality of raw materials	Concentration (g l ⁻¹ seawater, tonnes km ⁻² sediment); purity

Example indicators of selected <u>ecological functions</u> contributing to service delivery

Service	Function	Example Unit
	Primary production	g C per unit area/volume
		Changes in community composition
	Maintenance of food web dynamics	(abundance, biomass, species
1a: Food		diversity)
provision -	Nutrient cycling to maintain food web	Amount of nitrates, phosphates, silica
Wild	dynamics for target species	(g per unit area/volume)
capture sea	Supply of larvae & gametes of target species	Number per m ³
food	Support breeding population of suitable size and quantity	Male:female ratio; adult:juvenile ratio
	Provision of suitable habitats	Area of habitat (per m ²); quality of habitat; Number of juveniles

Example indicators of <u>benefits</u> generated by ecosystem services

Ecosystem services	Examples of ecosystem benefits	Indicators of benefits and their measurement
		(Units)
1a: Food provision - Wild	Nutrition from wild catch	g protein/year/ head or
capture sea food	seafood consumption	per household
	Wild catch seafood	Landings data at
	landed for human	particular times and
	consumption	places (tonnes)
	Fisheries revenues and	Monetary value (e.g. in
	contribution to Gross	£,\$or€)
	Value Added (GVA)	

Employment in fisheries Number of jobs

Ecosystem	Generic marine ecosystem service	
services	indicators	Measurement (Units)
purification		Modelled or empirically determined pollutant air-sea flux rates and direction (μ mol pollutant d ⁻¹ m ⁻² , μ g pollutant l ⁻¹ seawater d ⁻¹ m ⁻²)
		Modelled or empirically determined maps of pollutant concentrations (μ mol l ⁻¹ m ⁻² , μ g air pollutant l ⁻¹ seawater m ⁻²)
4: Climate	Air-sea and sediment-	Modelled or empirically determined (mg C m ⁻² d ⁻¹ , mg CO ₂
-	water fluxes of carbon and CO ₂	m ⁻² d ⁻¹)
	Air-sea fluxes of other greenhouse gases (e.g. dimethyl sulphide, methane, nitrous oxide)	Modelled or empirically determined (µg greenhouse gases m ⁻² d ⁻¹)
	different components of the marine ecosystem Permanence of carbon	Modelled or empirically determined carbon levels: biomass of carbon (g m ⁻²); dissolved organic or inorganic carbon (mg C m ⁻³); suspended organic or inorganic carbon (mg C m ⁻³); buried particulate organic or inorganic carbon (mg C m ⁻²) % of carbon turnover from sediments
	sequestration	

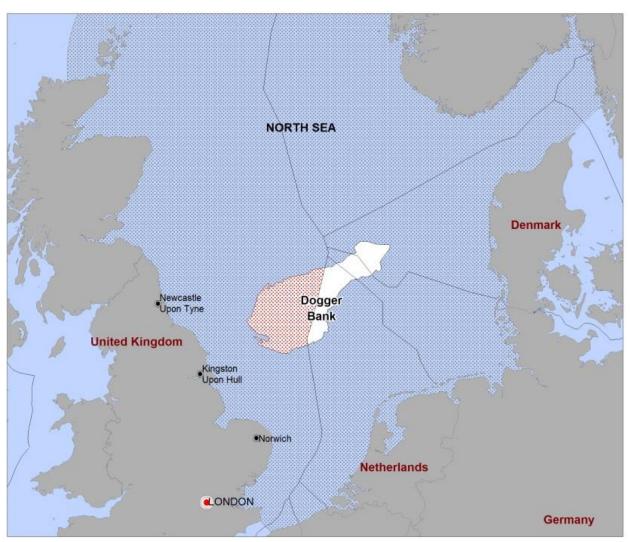
Example indicators of selected <u>ecological functions</u> contributing to service delivery

Service	Function	Example Unit	
	Pelagic and benthic fixation of carbon	Concentration of chlorophyll;	
	through photosynthesis	primary productivity	
	Deposition and sequestration of carbon	Hydrodynamics determined through	
	through hydrodynamic transport	modelling	
1. Climate		Carbon storage (g C m ⁻² time ⁻¹) -	
4: Climate	Deposition and burial of carbon in seabed	carbon buried in sediments; depth	
regulation	sediments through bioturbation	of carbon in sediment; persistence	
		of carbon in sediment	
	C storage in living biomass (seagrasses, salt	(g C m ⁻² year ⁻¹)	
	marshes, fish, benthic organisms etc.)		
	Calcification by marine organisms	(g Ca m ⁻² year ⁻¹)	
	Biogenic production/assimilation of		
	greenhouse gases (e.g.dimethyl sulphide,	Draduction of grouphouse gases (ug	
	methane, nitrous oxide) by phytoplankton,	Production of greenhouse gases (μg	
	pelagic microbiota, benthic micro and	greenhouse gases m ⁻² d ⁻¹)	
	macroalgae		

Example indicators of selected <u>benefits</u> generated by ecosystem services

Ecosystem	Examples of ecosystem	Indicators of benefits and their
services	benefits	measurement (Units)
4: Climate	Shadow price of Carbon (UK	Monetary value (e.g. in £, \$ or €)
regulation	ulation Treasury Green Book, CO ₂ equivalent)	

	osystem ervices	Generic marine ecosystem service indicators	Measurement (Units)
	tion and	Seaspace available for recreation	Number of square miles of sea with safe water quality available for recreational use
tourism	n	Number and quality of beaches	Number and size of accredited (blue flag) beaches
		Water quality	Chemical analysis (contaminant concentrations) and visual analysis; total coliforms or other pathogens (quantity per ml of water)
		Abundance and diversity of key species of recreational interest	Count data
		Area of biotopes of key interest to recreational users	For example, extent of seagrass, maerl or kelp beds (km ²)
13: Ae:		Uniqueness of a site	1/(Number of sights with similar features)
experience		Abundance of key species of individual interest	Count data
		Area of biotopes of key interest to individuals	For example, extent of seagrass, maerl or kelp beds (km ²)

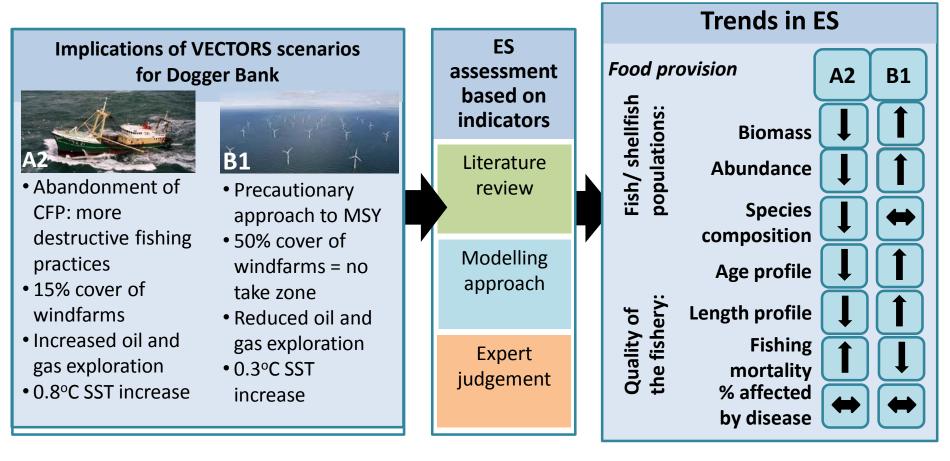


Ecosystem services	Generic marine ecosystem service indicators	Measurement (Units)
14: Inspiration for culture,	Species, habitat or ecosystems that have or	Insufficient information to define
art and design	can potentially inspire any piece of artwork	indicator
15: Cultural heritage	Species, habitats or ecosystems that can	Insufficient information to define
	potentially form the core of, or contribu <mark>t</mark> e	indicator
	to a cultural custom, rite or way of life	
16: Cultural diversity	Generic indicator can't be developed	Insufficient information to define
		indicator
17: Spiritual experience	Species, habitats or ecosystems that are	Insufficient information to define
	being or can potentially be worshipped or	indicator
	be of significance to a religious belief	
18: Information for	Species, habitats or ecosystems that are	Number of such species, habitats,
cognitive development	being or can potentially be studied to	ecosystems
	increase scientific knowledge	e the services 🗸
	Species, habitats or ecosyster	its,
	being of earl potentially be se	e indicators of services,
	educational purposes functi	ons, benefits 🗸 📃
	VECTORS 3. Apply	and test

Case study site: UK Section of the Dogger Bank, North Sea

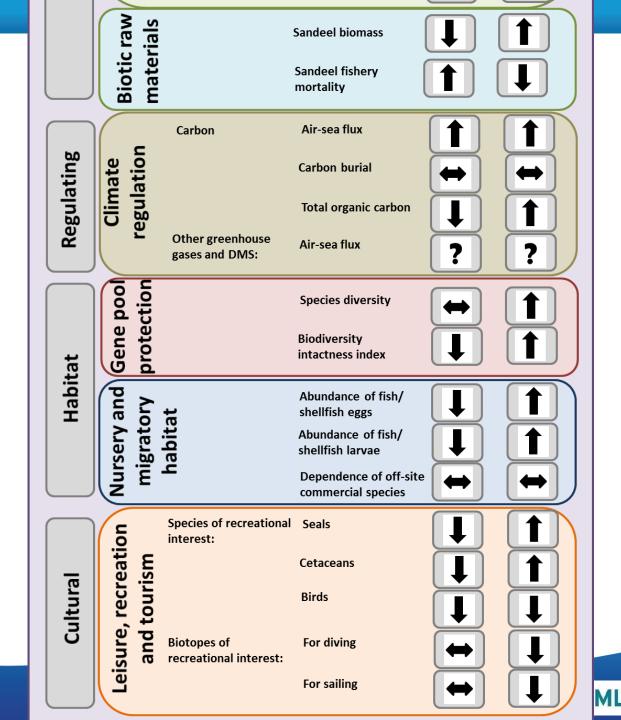
Total area: 18,700km² UK Sector: 12,300km²

- High levels of biodiversity
- Important fishing grounds
- Proposed marine renewables development
- EU conservation status
- Economically and ecologically important area



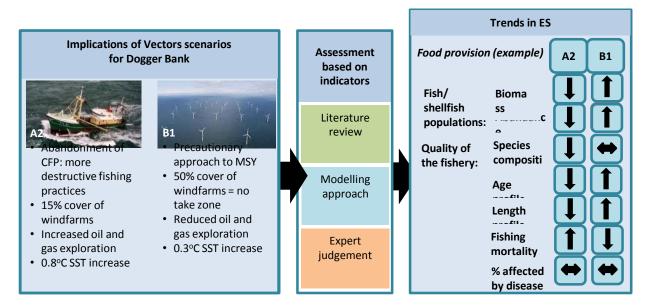
Dogger Bank: changes in ecosystem services under differing VECTORS future scenarios

- The Dogger Bank contributes to wellbeing by providing ecosystem services (ES)
- ES assessment to inform ecosystem approach to management



Plymouth Marine

aboratory


PN

More projected changes Dogger Bank ecosystem services under differing VECTORS future scenarios

Plymouth Marine Laboratory

Dogger Bank: changes in ecosystem services under differing VECTORS future scenarios

Data limitation restrict ES assessment; more

Lessons learnt:

- indicator specific data needed
- Results help prioritize research and monitoring
- Interdisciplinary teams are essential for ES
 - assessment

Valuing the Benefits

- Secondary data valuation
 - Data available only for fisheries and carbon regulation
 - Not sufficiently spatially resolved at the level of Dogger Bank
 - No suitable benefit transfer data
 - No available model data for future scenarios at this spatial resolution
- Primary valuation with choice experiment undertaken
- Deliberative valuation also undertaken

Application issues

Insufficient data :

- Of 15 ecosystem services of relevance to the Dogger Bank, indicators for only six are measurable for present day
- Only one indicator can be projected forward (with some degree of confidence).
- In some cases data are not available for any indicators of processes and functions, services or benefits.
- In other cases, data only exist for services but not benefits or processes
- Highlighted data gaps and areas for future study.
- Spatio-temporal data collected does not match needs

Indicator specificity

- Many indicators selected respond to multiple drivers and pressures (e.g. climate change as well as changing fishing pressure).
- Indicators can show an ecosystem service is changing.
- Causes and possible management actions can then be explored

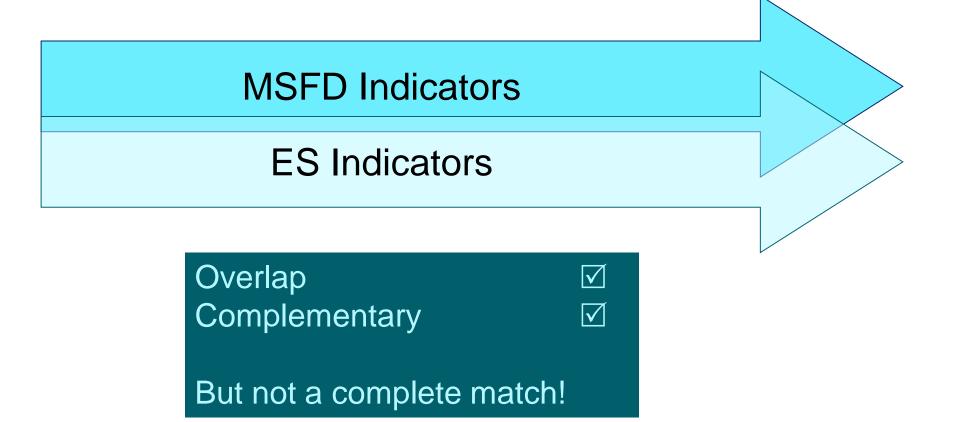
MSFD and Ecosystem Services

PML Plymouth Marine

The EC Marine Strategy Framework Directive (MSFD) calls for an ecosystem approach to marine management

- MSFD doesn't mention ecosystem services
- The Biodiversity Strategy does ③
- Indicators for MSFD monitoring and descriptors of Good Environmental Status were not developed to consider ecosystem services ⁽³⁾

MSFD Descriptors for good environmental status


- 1. Biological diversity is maintained.
- 2. Non-indigenous species do not adversely alter the ecosystems
- 3. Commercially exploited fish and shellfish within safe biological limits
- 4. Marine food webs [sustainable]
- 5. Eutrophication minimised

PML Plymouth Marine

- 6. Sea-floor integrity [sustainable]
- Hydrographical conditions no alteration that has adverse effects on ecosystems
- 8. Contaminant concentrations no pollution effects
- 9. Contaminants in fish and other seafood for human consumption [safe]
- 10. Marine litter does not cause harm to environment
- **11. Energy, including underwater noise,** do not adversely affect environment

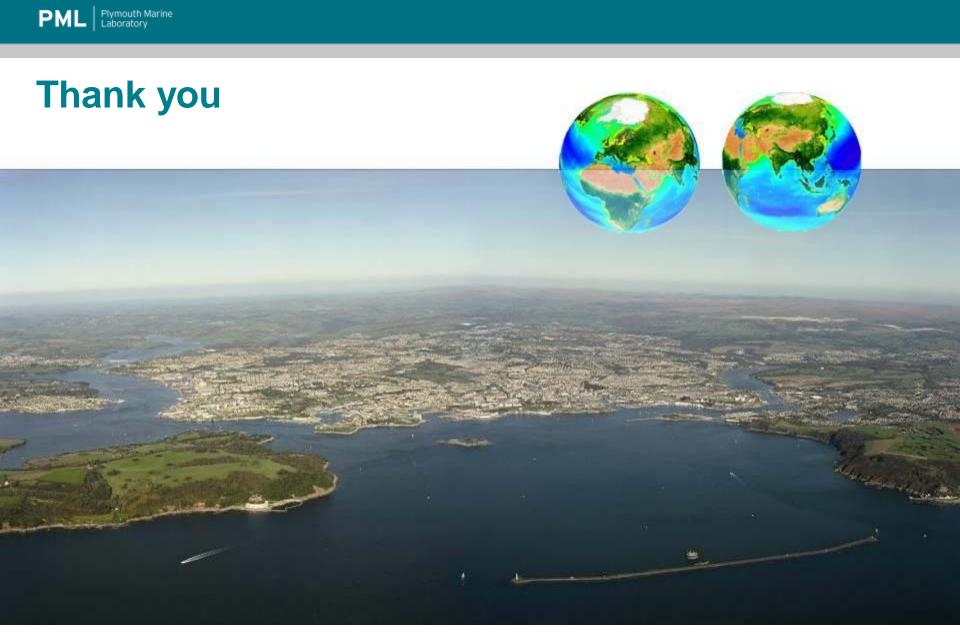
Parallel, but independent development....

MSFD: Marine Strategy Framework Directive ES: Ecosystem services

What I covered today....

PML Plymouth Marine

- Context of the research VECTORS
- Ecosystem services and ecosystem benefits
 - New marine typology
 - Indicators we now have some!
- But there are difficulties applying them
 - Application of indicators to ecosystem services in the Dogger Bank, North Sea
- Mi8salignm3nt with MSFD indicators and monitoring?
- Where to find out more...


More VECTORS information....

New design VECTORS website: Live by January 31st!

